
1

Arcade Games &
Bit-mapped Sprites

John Laird

September, 2005

Game = World Simulation
• Representing physical objects – real or imaginary

• Terrain
• Buildings (exterior and interior – walls, floors, …)
• Game objects (furniture, balls, fluids, weapons, vehicles, …)
• Animate objects (player, opponents, animals, …)

• Providing dynamics to world
• Physics
• Behavior: AI

• Supporting interaction
• Graphics
• Audio: dynamic sound, music, and speech
• Input devices: speech?
• Networking

Simulation Types
• Fixed Discrete

• Update world model each time step
• Each time step is same size
• Detect interactions by examination
• Wait if done too early

• Variable Discrete
• Time steps are variable - but fast as can
• More robust than fixed discrete
• Requires a bit more work on physics calculation

• Event-based
• Skip ahead to next predicted event (collision)
• Computed analytically
• Not a smooth simulation

Simple Game Architecture:
Real-time simulation

• Continual behavior
• Not just run a program and get an answer

• Real-time and highly interactive
• Update at around 30 times/second
• Consistency is important: discrete simulation
• Necessary to avoid clunky action or miss player input

• 2D graphics

• Simple physics: velocity, elastic collisions
• No mass, accelerations, momentum
• Easier in fixed simulation than variable

Arcade Games
• Examples

• Missile Command, Space Invaders, Breakout, Centipede,
Pac-Man, Frogger, Tempest, Joust,

• Important Traits:
• Easy-to-learn – simple controls
• Move objects around the screen
• Single-screen – or simple scrolling
• Infinite Play
• Multiple Lives
• Scoring – highest score
• Little to no story

Game Loop

Initialization Overall Game
Control

Exit

wait

Game Session
Control

Player Input

Main Logic
• Physics
• Game AI
• Collision Processing

Render scene
to buffer

Copy buffer to
display

Time sync

2

Static Objects
• Background, frame, fixed building, maze structure, …

• Draw only once

• Can be very complex
Background

Buffer

Screen

Dynamic Background
• If the background is scrolling or changing a lot

• Redraw complete buffer from scratch
• Avoid saving background for sprites
• More drawing

• Either
• Draw from back to front
• Draw using z-buffer or z-list

Buffer

Screen

Dynamic Objects: Sprites

Usually small number of pixels

Most be draw on screen 30 times/second
• Save background that sprite covers

• Player’s Sprite
• Paddle, gun, tank, …
• User can move it, turn, shoot, …

• Game Sprites
• All of the other objects in the game the move
• Bullets/missiles shot by player

• Most common interaction is collision
• Fast collision detection is important

Sprites:

• Object that moves around, displayed as a bit map
• NxM pixels:12 x 12 = 144. 100 x 100 = 10,000.
• Displayed on a background

Sprite Data

• Static
• Size
• Image sets
• Weapons, shields, worth, ...

• Dynamic
• Position
• Velocity
• Pose
• Current image
• Strength, health, ...
• Saved background

Creating Sprites

• Create Sprite in 2D or 3D drawing package
• 2D

• Paint Shop Pro by JASC
• Fractal Design Painter

• 3D
• 3D Studio Max
• Maya

• Save as file

3

Drawing the Sprite
• Some parts of the sprite are transparent

• Use a special code (255) to be transparent
• When drawing the pixels, don’t copy that code
• Is expensive because done for every pixel

• Some sprites have no transparencies
• Can have separate draw function
• Avoid test for transparency

Sprite Movement and Display
• Compute new position of Sprite

• If Sprite moved, erase Sprite by restoring saved background

• Save background where Sprite will go

• Draw Sprite

Run-Length Encoding
• Compress Sprites in files using “run-length encoding” (RLE).

• Instead of representing every pixel, encode number of consecutive
pixels of same kind in a row

• Big win if lots of same color in a row (transparent)
• Doesn’t capture vertical or 2D structure well.

• Not so good:

• Much better:

Long runs of same color

12 11 1 1 9

Semi-static Objects
• Rarely changes, doesn’t move

• Examples: Walls that can be damaged

• Change drawing on screen or buffer

• Not worth redrawing every cycle

• Do not have to save background

Buffer

Screen

Score 14

Sprite Scaling

• Used to show change in depth (distance)

• Options:
• Dynamic computation

• Can lead to very blocky pictures when they get big

• Pre-store different sizes
• Hard to get large numbers of intermediate sizes

• Pre-store different sizes for major size changes: x2
• Dynamically compute intermediate sizes

• Supported in Direct-X (in hardware and software)

Sprite Rotation

• Store each orientation as a separate bit map
• 16 different pictures is reasonable start

• Pick the closest one to the current orientation

• Calculating from scratch usually too slow

• Sometimes supported by hardware

4

Sprite Animation
• Changes in the display as state of object changes

• Example: standing, sitting, jumping, singing, shooting

• Choose the current bit-map based on object state
• Might require separate timer for animation changes

• Storage if including rotation
• #_of_bitmaps = #_of_angles * #_of_states

Sprite Collisions
• Easiest:

• Use the bounding box that includes all the pixels
 Test if vertex of one in
 bounding box of other

• Tricky:
• Use something a little smaller to avoid some fake collisions
• If things happen fast enough, people can’t tell

• Almost right but expensive:
• Test if non-transparent pixels overlap
• Can still miss some cases...

Collision? Depth

• Can fake depth by scaling but what if overlap?
• Want closer objects to cover distant objects
• Associate depth with each Sprite - usually small

number

• Image space solution
• Maintain shallowest depth rendered
• Add pixel if closer than previous
• Lots of work at each pixel if in software
• Hardware Z-buffer to rescue - standard for game

machines

• Object space solution
• Sort objects by depth

• O(#_of_objects * log(#_of_objects))
• Draw back to front

Color Map

• If you can only use small number of colors at once (256)

• But choose those 256 from 2^24 > 4 million

• Have (256) array. Each element has 24-bits:
• 8 bits each for Red, Green, Blue components.

Red Green Blue

0
1
2
3
.
.
.

Color value

0-255

145 222 41 255 0 0255 255 00 255 0

Color Map Animation

• For some special effects, don’t change Sprite
• Change values in colormap: Flashing lights…

• Color rotation
• Movement of water

Red Green Blue

0
1
2
3
.
.
6

Color value

6

